| Model codes | 2 | |---|----| | Specifications and performance | 4 | | Control options | | | Pressure & Flow (Load Sense) Compensator | 5 | | Pressure Compensator | 6 | | Torque Control | 7 | | Remote Pressure Control (RPC) | 8 | | Electronic Displacement Control (EDC) | 9 | | EH Inverse Proportional Pressure Control (IPPC) | 10 | | Electronic De-stroke (Cold Start) Valve | 11 | | Performance | | | ADU041 | 12 | | ADU049 | 14 | | ADU062 | 16 | | ADU080 | 18 | | Pump Installation | | | B-Mount – rear-ported | 20 | | B-Mount – side-ported | 21 | | C-Mount – rear-ported | 22 | | C-Mount – side-ported | 23 | | Thru-Drive SAE A option | 24 | | Thru-Drive SAE B option | 25 | | Dual shaft seal option | 26 | | Control Installation | | | Pressure & Flow (Load Sense) Compensator | 27 | | Pressure Compensator | 27 | | Torque Control | 28 | | Electronic Displacement Control (EDC) | 29 | | EH Inverse Proportional Pressure Control (IPPC) | 30 | | Electronic De-stroke (Cold Start) Valve | 31 | | External Manual Stroke Adjustment | 32 | | Input shaft options | 33 | | Center of gravity | 36 | | Installation and start-up | 37 | ### Introduction #### 420 Series Mobile Piston Pump The Eaton® X20 portfolio of open-circuit piston pumps is built to maximize machine performance and productivity. With sophisticated controls that enhance system efficiency and a compact design that delivers incredible power, the X20 portfolio empowers mobile machine operators to do more work in less time using less fuel. # Sophisticated controls that improve performance while optimizing efficiency. **Excellent pressure responsiveness** – The X20 portfolio delivers the fastest response and recovery times in the open-circuit piston segment, helping customers get the job done faster. **Low standby pressure** – The X20 portfolio can maintain low margin pressure (~150 psi) with exceptional stability, reducing heat generation and helping to eliminate wasted energy. **Stable fan drive functionality** – Eaton's fan drive control reaches desired speed more quickly and remains stable once there, reducing energy-wasting oscillation. **Advanced electronic controls** – The cold start and fan drive controls are Pro-FX Ready, meaning they can be easily configured with pre-programmed development tools and controlled electronically for maximum flexibility and precision. **Winning load sense combination** – X20 works in conjunction with Eaton's CLS Load Sense Sectional Mobile Valve, providing OEMs one resource for their machine's load sense needs. # Compact design that enables greater flexibility and cost savings. **Simplified pump architecture** – The X20 pump has 25% fewer components than traditional pumps, reducing the number of leak points and simplifying maintenance. **Compact package size** – The X20 portfolio's small size satisfies Tier 4 requirements and provides more flexibility when designing the engine compartment. **More horsepower** – The compact rotating group delivers a remarkable amount of horsepower, improving productivity without using more fuel. **One-piece housing** – Single-piece pump housing removes leak points and makes maintenance faster and easier versus more complicated multi-piece housings. # Multiple options that make it easy to specify exactly what you need. Variety of control options – Including pressure control, load sense, cold start, torque control, remote pressure control, inverse proportional pressure control, proportional pressure control, electronic displacement control, and swash sensor feedback, giving you more ways to design more efficient, productive machines. **Several displacement options** – With seven displacement options, there's an X20 pump to fit virtually any mobile application need. Eaton's 420 Series is available with displacements of 41cc, 49cc, 62cc, and 80cc for operating speeds at 2,650 rpm. A strong, field-proven rotating group allows the pumps to handle pressures to 280 bar (4060 psi) continuous and 320 bar (4600 psi) intermittent. The combination of high load capacity bearings and a stiff drive shaft help provide a pump B10 bearing life of up to 10,280 hours at rated mobile conditions, reducing operating costs and extending operating life. **Variety of mounting options** – The X20 portfolio is available with both SAE and ISO mounting flange configurations, can be side- or rear-ported, and offers multiple drain ports to help overcome any installation challenges. #### Exceptional quality that provides remarkable reliability. **Unique control piston design** – Single-acting control piston with special coating helps minimize friction, increasing operating life. **Bronze piston shoes** – Bronze piston shoes are robust against contamination should particles enter the fluid, enhancing system performance and component service life. **High-load bearings** – Larger, more durable bearings resist wear and deliver industry-leading bearing life. **3-year manufacturer's warranty** – Eaton's warranty terms provide peace of mind for three full years, helping you get through your warranty period with complete confidence. # Global network of Eaton-certified experts for end-to-end support. **More partners in more regions** – Growing network of Eaton distributors around the world ensures there's local service and support anywhere you need it. World-class system design and assembly – Our expert distribution partners can help with everything from specifying to prototyping and assembly to commissioning, so you can focus on other areas of your business. **Eaton-standardized practices and processes** – Eaton employs a unique system of tools and processes, known as the Eaton Business System, to ensure quality development and delivery of the 220 X20 product. These tools and process include such known methods as Design for Six Sigma, Lean Manufacturing and ISO certification. ### Model codes 420 Mobile Piston Pump | ADU 123 | 062 R 08 AB 1 0 AA 43
456 7 89 1011 12 13 1415 1617 | 14 18 19 | 20 21 | 0A 22 23 | 01 24 25 | AB 26 27 | 1 | 2930 | CD 31 32 | 33 34 | C | |---|---|--|-------|--|--|--|--|--|---|------------------------------------|----------| | 123
ADU -
456
041 -
049 -
062 -
080 - | Pump series 420 Series open circuit piston pump Pump displacement 41.0 cm3/r [2.50 in3/r] 49.2 cm3/r [3.00 in3/r] 62.3 cm3/r [3.80 in3/r] 80.0 cm3/r [4.88 in3/r] | 13
0 -
1 -
2 -
3 -
4 - | | thru-c
No dia
#6 SA
M14 r
#4 SA
M12 r | drive un
agnostic
E o-ring
metric o
E o-ring
metric o | nits c pressu g - plugg p-ring - p p-ring - p | ure po
ged (r
blugg
ged (s
blugg | orts
ear por
ed (rea
side por
ed (side | availab
rts only)
r ports (
rts only)
e ports | only)
only) | | | L –
R – | Input shaft rotation Left hand Right hand | AA -
AB - | | load s
Pressi | ense po
ure flow | ort (left
v comp | side)
ensat | | #4 SAE
M12 m | | | | 8 9
01 -
02 -
03 -
05 -
08 -
32 -
33 -
34 -
35 -
38 - | Front mount and shaft 2 Bolt B, 22.2 mm (0.875in.) Dia. keyed shaft 2 Bolt B, 25.4 mm (1.00in.) Dia. keyed shaft 2 Bolt B, 22.22 mm (.875in.) Dia. tapered keyed shaft 2 Bolt B, 13 tooth 16/32 spline 2 Bolt B, 15 tooth 16/32 spline 2/4 Bolt C, 14 tooth 12/24 spline 2/4 Bolt C, 31.8 mm (1.25in) Dia. keyed shaft 2 Bolt B, 15 tooth 16/32 sled runner spline 2 Bolt B, 14 tooth 12/24 spline 2/4 Bolt C, 31.75 mm (1.25) Dia. tapered keyed shaft | AC -
AH -
AJ -
AK -
AP -
AT - | - | Pressi
Pressi
SAE of
Pressi
M12 r
pressi
Remo
left sid
Pressi
electro
EH Inv | ring loa
ure flow
metric oure com
te press
de
ure and
onic dis
verse pr | npensate composition compositi | cor or ensate por ensate ad secor windrol | or with or (left stor with ense poth torque) M12 mensator ontrol - | torque
rt (left s
ue cont
netric o- | contro
iide)
rol
ring poi | ıl | | 10 11 | Main ports size & location | AW - | _ | Remo | al mour
te pres:
-20 SAE | sure co | | | 0 | | | | AA –
AB – | Rear ports suction - 2" (code 61);
Pressure - 1" (code 61)
Side ports suction - 2" (code 61); | AY - | | Pressi | ure and | flow co | ompe | nsator | | /pe | | | AC - | Pressure - 1" (code 61) Rear ports suction - 2" (code 61) with M12 threads; | 16 17 | | | ure cor | - | | _ | * | | | | AD – | Pressure - 1" (code 61) with M10 threads.
Side ports suction - 2" (code 61) with M12 threads;
Pressure -1" (code 61) with M10 threads. | 28 -
35 -
43 - | | 241-24 | 14 bar (;
18 bar (;
33 bar (; | 3500-36 | 300 lk | of/in²] | | | | | AE – | Rear ports suction - SAE o-ring port;
Pressure - UN-2B SAE o-ring port
(ADU041, ADU049 & ADU062 only) | 18 19 | 9 | | compe
ol setti | | / rer | note p | ressure |) | | | AF – | Side ports suction - #24 SAE o-ring;
Pressure - #16 SAE o-ring
(ADU041 and ADU049 only) | | | 12-15 | w com
bar [180
bar [33 | 0-220 lk | of/in²] | Ü | | | | | AG – | Rear ports suction - M48 metric o-ring;
Pressure - M33 metric o-ring
(ADU041 & ADU049 Only) | | | settings ava | ailable by re | equest | | | | | | | AH – | Side ports suction - M48 metric o-ring;
Pressure - M33 metric o-ring
(ADU041 & ADU049 only) | | | | | | | | | | | | AK – | Rear ports suction - 2" (code 61);
Pressure - #16 SAE o-ring (ADU062 only) | | | | | | | | | | | | 12 | Case drain ports | | | | | | | | | | | | 1 –
2 –
3 –
4 –
5 – | #12 SAE o-ring - top #12 SAE o-ring - bottom M27 x 2 o-ring - top M27 o-ring - bottom #12 SAE o-ring - left side (swash sensor boss) | | | | | | | | | | | # Model codes 420 Mobile Piston Pump | ADU 123 | 062 R 08 AB 1 0 AA
456 7 89 1011 12 13 1415 | 43 16 17 | 14 00
18 19 20 21 | 0A 01 AB 1 00 CD 00 C 22/23 24/25 26/27 28 29/30 31/32 33/34 35 | | |--|---|-----------------|--|--|--| | 2021
00 –
AA – | Torque control setting No torque control 40 Nm [350 in-lbs] (41,49) | [10][17] | 26 27
00 –
AB – | Auxiliary (rear) mount & output shaft No auxiliary mounting features SAE A 2 Bolt, 11T 16/32 Spline | | | AB –
AC –
AD –
AE – | 51 Nm [450 in-lbs] (41,49)
62 Nm [550 in-lbs] (41,49,62)
73 Nm [650 in-lbs] (41,49,62,80)
85 Nm [750 in-lbs] (41,49,62,80) | | AC –
AD –
AE – | SAE A 2 Bolt, 111 16/32 Spline SAE B 2 Bolt, 15T 16/32 Spline SAE A 2 Bolt, 9T 16/32 Spline | | | AF -
AG -
AH -
AJ -
AK -
AL -
AM -
AN -
AP - | 96 Nm [850 in-lbs] (41,49,62,80)
107 Nm [950 in-lbs] (41,49,62,80)
119 Nm [1050 in-lbs] (49,62,80)
130 Nm [1150 in-lbs] (49,62,80)
141 Nm [1250 in-lbs] (49,62,80)
153 Nm [1350 in-lbs] (62,80)
164 Nm [1450 in-lbs] (62,80)
175 Nm [1550 in-lbs] (62,80)
186 Nm [1650 in-lbs] (62,80)
198 Nm [1750 in-lbs] (62,80) | | 28
0 -
1 -
2 -
3†-
4 -
5 - | Shaft seal No shaft seal Standard polyacrylate shaft seal Viton shaft seal Double, two-way shaft seal, Viton with VHO filter Nitrile shaft seal Single viton shaft seal in 2/4 Bolt C mount pump housing | | | AT –
AU – | 209 Nm [1850 in-lbs] (62,80)
220 Nm [1950 in-lbs] (80) | | 29 30
00 – | Pump special features No special features | | | 22 23
00 -
0A -
0B -
0D -
0S - | Control special features Control special features Bleed down orifice 24V Cold start valve 12V Cold start valve 12V DC solenoid AMP Jr connector (used with EH inverse proportional pressure control) 24V DC solenoid AMP Jr connector (used with EH inverse proportional pressure control) 12V DC solenoid deutsch connector (used with EH inverse proportional pressure control) 24V DC Solenoid deutsch connector (used with EH inverse proportional | | AA -
AB -
AC -
AD -
AE - | Auxiliary mounting cover plate Swash position sensor Shaft speed sensor Modified end cover, corner removed Support Studs (1/2-13 UNC-2B x 117.8 (4.64) long in top two end cover/housing bolt locations Swash position sensor and shaft speed sensor | | | 0T – | | | 31 32
00 –
CD –
0B – | Paint No paint Blue primer Black | | | 0U -
0V - | | | 33 34
00 –
0J – | Identification/packaging Standard Eaton identification box packaging ATEX certification | | | 24 25 | pressure control) Maximum displacement option* | | - 35
C - | Design level Third design | | | 01 –
02 – | Standard displacement (as given in code ti
External manual stroke adjustment set at | | | settings available by request, including fixed displacement stops. ble on SAE B mount | | # Specifications and performance 420 Mobile Piston Pump #### **General performance specifications** | | | Units | ADU041 | ADU049 | ADU062 | ADU080 | |------------------------|---------------------------|---------------------------|--------------------|--------------|--------------|-------------| | Displacement | | cc/r (in³/r) | 41.0 (2.50) | 49.2 (3.00) | 62.3 (3.80) | 80.0 (4.88) | | Mounting | | | 2 Bolt B, 2 Bolt C | , 2/4 Bolt C | | | | Pressure | Continuous | bar (psi) | 280 (4060) | 280 (4060) | 280 (4060) | 210 (3050) | | | Intermittent ² | | 320 (4600) | 320 (4600) | 320 (4600) | 230 (3335) | | | Peak ³ | | 350 (5000) | 350 (5000) | 350 (5000) | 250 (3625) | | Speed ⁴ | At 1 bar abs (0 psig) | rpm | 2650 | 2650 | 2600 | 2500 | | | At.85 bar abs (5 in.Hg) | | 2450 | 2450 | 2400 | 2200 | | | At 2 bar abs (15 psig) | | 2950 | 2950 | 2800 | 2800 | | | Max (standby) | | 3600 | 3600 | 3600 | 3600 | | | Min | | 600 | 600 | 600 | 600 | | Power | Max (theoretical) | kW (hp) | 50.7 (68.0) | 60.8 (81.5) | 75.6 (101.3) | 61.7 (82.7) | | | Standby | | .98 (1.3) | .98 (1.3) | 1.1 (1.5) | 1.4 (1.9) | | Torque | Max (theoretical) | Nm (lb-ft) | 183 (135) | 219 (162) | 278 (205) | 268 (198) | | Weight | Single Seal ¹ | kg (Ibm) | 22.9 (50.4) | 22.9 (50.4) | 23.8 (52.4) | 24.2 (53.4) | | | Dual Seal ¹ | | 24.1 (53.1) | 24.1 (53.1) | 25.0 (55.1) | 25.4 (56.1) | | Bearing life⁵ | At 140 bar (2030 psi) | B10 Hours | 103,650 | 55,580 | 33,500 | 17,150 | | | At 210 bar (3045 psi) | | 26,830 | 14,380 | 8,670 | 4,440 | | | At 280 bar (4060 psi) | | 10,280 | 5,510 | 3,320 | N/A | | Mass moment of inertia | | Nm-sec ² | .0033 | .0033 | .0046 | .0058 | | | | (lb-in-sec ²) | (.0288) | (.0288) | (.0403) | (.0517) | - 1 Standard SAE B non-through drive. - 2 Less than 10% of duty cycle. - 3 Momentary system pressure spikes only. - 4 Ratings based on Flange ports. Note: Tube ports are not available on the 62cc and 80cc displacements. - 5 Bearing life ratings at rated speed 1 bar abs (0 psig) inlet. #### Inlet pressure, case pressure, and operating temperature requirements | Inlet pressure | | | Case pressure | | | Operating temperature | | | | |----------------|------------------|----------------|--------------------|----------------------|----------------|-----------------------|------------------------|----------------------|--| | Rated | Minimum | Maximum | Maximum continuous | Maximum intermittent | Peak | Rated | Minimum
temperature | Maximum intermittent | | | bar abs (psig) | bar abs (in. Hg) | bar abs (psig) | bar abs (psig) | bar abs (psig) | bar abs (psig) | °C (°F) | °C (°F) | °C (°F) | | | 1.0 (0) | 0.85 (5) | 4.4 (50) | 1.3 (5) | 3.1 (30) | 6.2 (75) | 93 (200) | -37 (-35) | 104 (220) | | #### **Hydraulic fluids** | Fluid | Recommended operating viscosity range cSt (SUS) | Maximum
continuous
cSt (SUS) | Maximum
viscosity at
startup
cSt (SUS) | Minimum
viscosity @ max.
temperature of
93°C (200°F)
cSt (SUS) | Minimum
intermittent
cSt (SUS) | |---|---|------------------------------------|---|--|--------------------------------------| | Use antiwear hydraulic oil, or automotive type crankcase oil (designations SC, SD, SE or SF) per SAE J183 FEB80 | 16 to 40 (80 to 188) | 430 (1192) | 2100 (9720) | 10 (59) | 6 (46) | For more information, see Eaton publication 579. For operation on other alternative or environmentally friendly fluids, please contact your Eaton representative. #### Pressure & Flow (Load Sense) Compensator The pump will provide flow & pressure matching of pump output to system load demand, maximizing efficiency and improving load metering characteristics of any directional control valve installed between the pump and the load. Load sensing ensures that the pump always provides only the amount of flow needed by the load. The pump operating pressure adjusts to the load pressure plus a pressure differential required for the load sense margin. When the system is not demanding flow, the load sense control will operate in low pressure zero flow, energy saving stand-by mode. The differential pressure is the difference between the pressure inlet and service port of a proportionally controlled directional valve, or a load sensing directional control valve. See the model code for differential pressure settings for load sensing. If the load pressure exceeds the system pressure setting, the pressure compensator reduces pump displacement. The load sensing line must be as short as possible and can also be used for remote pressure control or unloading of the pump pressure. For remote pressure control purposes, it is recommended that you contact your Eaton Representative for the correct configuration of the control. #### Warning: - When adjusting the pressure compensator, install a 0 to 350 bar (0 to 5000 psi) gage in the outlet gage port and limit the pressure setting to the continuous rated pressure for the pump displacement. It is possible to adjust the pressure compensator beyond the rated pressure of the pump. Doing so, may void the warranty of the pump. - 2. EATON recommends use of relief valve in all systems. #### **Pressure limit settings** The pressure compensator uses two springs to cover the full pressure range of the X20 pumps. Spring 1 = < 140 bar (2050 psi) Spring 2 = 145 - 280 bar (2100 - 4060 psi) #### Flow compensator (load sense) settings There are two springs used to cover the load sense adjustment range of this control. Available load sense range is Spring 1 = < 20 bar (290 psi) Spring 2 = 22-42 bar (319-609 psi). #### Dynamic response per SAE J745 (using swash plate position) | | Response
(off stroke) | Recovery
(on stroke) | Load sense recovery | |--------|--------------------------|-------------------------|---------------------| | | msec | msec | msec | | ADU041 | 20 | 75 | 90 | | ADU049 | 20 | 75 | 90 | | ADU062 | 25 | 90 | 115 | | ADU080 | 26 | 75 | 115 | #### Typical operating curve #### Pressure Compensator The pump will provide a continuously modulated flow to meet changing load demands at a pre-adjusted compensator pressure. At pressures below the compensator setting, the pump will operate at maximum displacement. See model code position 16,17 for compensator pressure ranges. #### Warning - 1. When adjusting the pressure compensator, install a 0 to 350 bar (0 to 5000 psi) gage in the outlet gage port and limit the pressure setting to the continuous rated pressure for the pump displacement. It is possible to adjust the pressure compensator beyond the rated pressure of the pump. Doing so, may void the warranty of the pump. - 2. EATON recommends use of relief valve in all systems. #### **Pressure limit settings** The pressure compensator uses two springs to cover the full pressure range of the X20 pumps. Spring 1 = < 140 bar (2050 psi) Spring 2 = 145 - 280 bar (2100 - 4060 psi) #### Dynamic response per SAE J745 (using swash plate position) | | Response
(off stroke) | Recovery
(on stroke) | |--------|--------------------------|-------------------------| | | msec | msec | | ADU041 | 20 | 75 | | ADU049 | 20 | 75 | | ADU062 | 25 | 90 | | ADU080 | 26 | 75 | Pressure cut-off characteristics of pressure compensator control at 49°C (120°F), static conditions. #### Torque Control The torque control limits the torque input to the pump preventing the engine from stalling while also optimizing the use of the engine power. When combined with Pressure Compensator Control and/or Load Sense, it will allow the pump to remain inside the power envelope of the Pressure Flow curve. When the combination of pump flow and outlet pressure moves outside the envelop the pump displacement will automatically be reduced. # This maximum setting is easily calculated using the following steps: - Select the 420 pump displacement you intend to use - Identify the available engine horsepower (HP) and speed (rpm) Horsepower (KW) x 9550 - Calculate the torque limit required by the system using the equations shown - · Select the MAX torque setting from the table shown Torque (in-lbs) = Horsepower (HP) x 63025 Engine RPM Torque (Nm) = Engine RPM | Code | Torque setting | 41cc | 49cc | 62cc | 80cc | |------|----------------------|----------|----------|------|----------| | AA | 40 Nm (350 in-lbs) | √ | V | - | <u> </u> | | AB | 51 Nm (450 in-lbs) | √ | √ | _ | <u> </u> | | AC | 62 Nm (550 in-lbs) | √ | √ | √ | <u> </u> | | AD | 73 Nm (650 in-lbs) | √ | √ | √ | √ | | AE | 85 Nm (750 in-lbs) | √ | √ | √ | √ | | AF | 96 Nm (850 in-lbs) | √ | √ | √ | √ | | AG* | 107 Nm (950 in-lbs) | √ | √ | √ | √ | | AH | 119 Nm (1050 in-lbs) | <u> </u> | √ | √ | √ | | AJ | 130 Nm (1150 in-lbs) | _ | √ | √ | √ | | AK | 141 Nm (1250 in-lbs) | <u> </u> | √ | √ | √ | | AL | 153 Nm (1350 in-lbs) | _ | _ | √ | √ | | AM | 164 Nm (1450 in-lbs) | <u> </u> | <u> </u> | √ | √ | | AN | 175 Nm (1550 in-lbs) | _ | _ | √ | √ | | AP | 186 Nm (1650 in-lbs) | <u> </u> | <u> </u> | √ | √ | | AR | 198 Nm (1750 in-lbs) | _ | _ | √ | √ | | AT* | 209 Nm (1850 in-lbs) | <u> </u> | <u> </u> | √ | √ | | AU | 220 Nm (1950 in-lbs) | <u> </u> | <u> </u> | √ | √ | ^{*} reference 62cc #### Remote Pressure Control (RPC) Remote relief valve is to be connected to pilot port "J" through necessary external piping. Standard differential pressure of 20 bar is set at RPC spool. The required outlet pressure (below 280 bar) can be set by adjusting remote relief valve setting. Once pressure reaches preset value, flow across remote relief valve starts, this results in RPC spool movement due to pressure imbalance. This will de-stroke the pump to maintain the set pressure. Secondary pressure compensator is provided to limit the max pressure setting as a fail safe measure. The delta pressure is factory set which can not be changed. #### Note- - · Flow compensator is not available with RPC. - Flow compensator/ Remote pressure control setting should be selected within range of 10-24 bar (140-350 psi). - Remote relief valve is not included in supply scope of the pump. - If the remote line is connected directly to tank, the flow compensator setting selected in the model code will be the minimum pressure setting. | Delta pressure setting at control valve - bar (psi) | 14 - 24 (200 - 350) | |---|---------------------| | Control fluid consumption - Ipm (gpm) | 4.5 (1.2) max. | | Recommended flow rating of remote relief valve- lpm (gpm) | 3 - 5 (0.8 - 1.32) | | Recommended Eaton Relief Valve part number | RV5-10-S-0-50 | #### Electronic Displacement Control (EDC) Pump displacement can be controlled infinitely, as per the current signal provided to the solenoid control valve. The integrated pump control makes use of an external current signal to vary the pump displacement. This control has an proportional characteristic i.e. with increasing current signal, the displacement increases proportionately. This control is with manual override. Based on fail safe condition there are two types: **Min type (EP):** Return to min displacement in case of power loss. **Max type (EPD):** Return to max displacement in case of power loss #### Warning: - When adjusting the pressure limiter, install a 0 to 350 bar (0 to 5000 psi) gage in the outlet gage port and limit the pressure setting to the continuous rated pressure for the pump displacement. It is possible to adjust the pressure compensator beyond the rated pressure of the pump. Doing so, may void the warranty of the pump. - EATON recommends use of relief valve in all systems. #### **Pressure limit settings** The EDC can operate between 20 bar (290 psi) and 280 bar (4060 psi). #### Electrical data | Voltage | 12 V DC | 24 V DC | |-----------------------|---------------------|---------------------| | Max Current | 1500 mA | 750 mA | | R20, Resistance(ohm) | 5.19 +/- 0.52% | 20.8 +/- 2.08 | | Type of Control | Current | Current | | Recommended | 250 Hz | 250 Hz | | PWM Frequency | | | | Dither Frequency | 75 Hz | 75 Hz | | Dither Amplitude | 300 mA | 300 mA | | Duty Cycle | 100% | 100% | | Insulation material | Class H, 180 deg C | Class H, 180 deg C | | Protection Class | IP69K | IP69K | | Connector | Deutsch | Deutsch | | Operating Temperature | -40 deg C; 85 deg C | -40 deg C; 85 deg C | This control has manual override. Hysteresis less than 5%. For cold start function, | Control type | Supply current (mA) | | | | |--------------|---------------------|-----|--|--| | | 12V | 24V | | | | EP | 0 | 0 | | | | EPD | 480 | 240 | | | #### EP type #### **EPD** type #### EH Inverse Proportional Pressure Control (IPPC) The EH Inverse Proportional Pressure control allows for stepless variation of the max pump output pressure, as per the current signal provided to the control valve solenoid. The integrated pump control makes use of an external current signal to vary the pump output pressure This control has an inverse proportional characteristic i.e. with increasing current signal, the max output pressure is proportionately reduced #### Warning: - When adjusting the pressure limiter, install a 0 to 350 bar (0 to 5000 psi) gage in the outlet gage port and limit the pressure setting to the continuous rated pressure for the pump displacement. It is possible to adjust the pressure compensator beyond the rated pressure of the pump. Doing so, may void the warranty of the pump. - EATON recommends use of relief valve in all systems. #### **Pressure limit settings** The minimum is 110 bar and max pressure can be set from 140 bar (2050 psi) to 280 bar (4060 psi). #### Electrical data | Voltage | 12 V | 24 V | | | |-----------------------|----------------------|----------------------|--|--| | Max Current | 1500 mA | 750 mA | | | | R20, Resistance (ohm) | 5.3 +/- 5% | 21.2 +/- 5% | | | | Type of Control | Current | Current | | | | Recommended | 100 Hz | 100 Hz | | | | PWM | | | | | | Frequency | | | | | | Duty Cycle | 100% | 100% | | | | Insulation material | Class H, 180 deg C | Class H, 180 deg C | | | | Protection Class | IP6K6/IP69K | IP6K6/IP69K | | | | Connector | AMP Junior Power | AMP Junior Power | | | | | Timer/ Deutsch | Timer/ Deutsch | | | | | Connector DT04-2P | Connector DT04-2P | | | | Operating Temperature | -30 deg C; 105 deg C | -30 deg C; 105 deg C | | | Typ. Current vs pressure characteristics of IPPC at 1800 rpm at various max pressure settings at 49 deg C (120deg F), static conditions. Electronic De-stroke (Cold Start) Valve The 620 Electronic Destroke Valve reduces pump start-up torque by directing outlet pressure to the control piston. It is primarily used in cold weather applications and includes a 12 or 24 VDC directional control valve mounted between the pump housing and compensator. Refer model code position 22,23 - control special features for available connector options # Overall efficiency versus speed @ 49° C (120° F), Full Flow, and 1.0 bar (0 psi) Inlet 1500 2000 Input speed, rpm 2500 3000 Overall efficiency versus speed @ 49° C (120° F), full flow, and 1.0 bar (0 psi) Inlet # Input power versus speed @ 49° C (120° F), full flow, and 1.0 bar (0 psi) inlet 1000 500 Input torque versus speed @ 49° C (120° F), full flow, and 1.0 bar (0 psi) inlet Input speed, RPM ### **Performance** #### ADU041 #### Delivery and case flow versus speed @ 49° C (120° F) #### Input torque and case flow stand-by @ 49° C (120° F) #### Input torque and case flow cut-off @ 49° C (120° F) Overall efficiency versus speed @ 49° C (120° F), full flow, and 1.0 bar (0 psi) inlet Overall efficiency versus speed @ 49° C (120° F), full flow, and 1.0 bar (0 psi) inlet Input power versus speed @ 49° C (120° F), full flow, and 1.0 bar (0 psi) inlet Input torque versus speed @ 49° C (120° F), full flow, and 1.0 bar (0 psi) inlet ### **Performance** #### **ADU049** #### Delivery and case flow versus speed @ 49° C (120° F) #### Input torque and case flow stand-by @ 49° C (120° F) #### Input torque and case flow cut-off @ 49° C (120° F) # Overall efficiency versus speed @ 49° C (120° F), full flow, and 1.0 bar (0 psi) inlet ## Overall efficiency versus speed @ 49° C (120° F), full flow, and 1.0 bar (0 psi) inlet # Input power versus speed @ 49° C (120° F), full flow, and 1.0 bar (0 psi) inlet # Input torque versus speed @ 49° C (120° F), full flow, and 1.0 bar (0 psi) inlet ### **Performance** #### ADU062 #### Delivery and case flow versus speed @ 49° C (120° F) 1500 Input speed, rpm 2500 #### Input torque and case flow stand-by @ 49° C (120° F) #### Input torque and case flow cut-off @ 49° C (120° F) 1000 500 # Input power versus speed @ 49° C (120° F), full flow, and 1.0 bar (0 psi) inlet # Overall efficiency versus speed @ 49° C (120° F), full flow, and 1.0 bar (0 psi) inlet # Input power versus speed @ 49° C (120° F), full flow, and 1.0 bar (0 psi) inlet # Input torque versus speed @ 49° C (120° F), full flow, and 1.0 bar (0 psi) inlet Input Speed, rpm ### **Performance** #### ADU080 #### Delivery and case flow versus speed @ 49° C (120° F) ### Input torque and case flow stand-by @ 49° C (120° F) ### Input torque and case flow cut-off @ 49° C (120° F) B-Mount - rear-ported #### **RH Rotation** B-Mount - side-ported C-Mount - rear-ported View A-A LH Rotation C-Mount - side-ported #### Thru-drive SAE A Groove to accept a cap as 568A size 042 (1/16 X 3 1/4 ID) o-ring For output shaft configuration see separate output shaft installation drawing #### SAE A Thru-drive cover plate installation # Output shaft installation 9T spline Maximum torque 75 Nm (660 in-lbf) Ø 16.54 (.651) 9 toothe 30° flat root side fit 16/32 class 5 internal spline per ANSI B92.1 Accepts 9 tooth 30° flat root side fit 16/32 external splines per SAE J498b Class 1 or ANSI B92.1 class 5 with 31.8 (1.25) extension from mounting flange Additional units dive by this spline must not require more than 74.6 N-m (55 Lbf-ft) of torque With double shaft seal and C-mount # Output shaft installation 11T spline Maximum torque 119 Nm (1056 in-lbf) Ø19.33 (.761) 11 tooth 30° Flat root side fit 16/32 class 1 internal spine per SAE J498B Accepts 11 tooth 30° flat root side fit 16/32 external splines per SAE J498B class 1 or ANSI B92.1 class 5 with 31.8 (1.25) extension from mounting flange Additional units driven by this spline must not require more than 118.6 N-m (88 Lbf-ft) of torque With double shaft seal and C-mount Thru-Drive SAE B #### Thru-drive SAE B #### SAE B thru-drive cover plate installation Dual shaft seal option Pressure & Flow (Load Sense) Compensator Torque Control Electronic Displacement Control (EDC) EH Inverse Proportional Pressure Control (IPPC) Electronic De-stroke (Cold Start) Valve #### **Cold start valve** ### **Optional connectors** Metri-pack 150 option #### Maximum stroke limiter ## Input shaft options #### 01 Code Maximum torque 209 Nm (1850 in-lbf) #### 02 Code Maximum torque 337 Nm (2987 in-lbf) #### 03 Code Maximum torque 209 Nm (1850 in-lbf) #### 05 Code Maximum torque 307 Nm (2717 in-lbf) ## Input shaft options ### 08 Code Maximum torque 397 Nm (3514 in-lbf) 33 Code Maximum torque 450 Nm (3980 in-lbf) #### 32 Code Maximum torque 640 Nm (5660 in-lbf) #### 34 Code Maximum torque 397 Nm (3514 in-lbf) # Input shaft options **35 Code** Maximum torque 640 Nm (5660 in-lbf) 38 Code Maximum torque 450 Nm (3980 in-lbf) ### Center of gravity | | Rear Port | | Side Port | | Thru-
Drive | | Length | Dual Seal | | | | |--------|--------------|------------|------------|--------------|----------------|------------|--------------|------------|------------|---------------|-------------| | | Lcg | L3 | L4 | Lcg | L3 | L4 | Lcg | L3 | L4 | Lt | Lds | | ADU041 | 109.6 (4.31) | 9.6 (0.38) | 2.9 (0.11) | 114.7 (4.51) | 9.2 (0.36) | 2.4 (0.10) | 131.5 (5.18) | 8.2 (0.32) | 2.1 (0.08) | 287.3 (11.31) | 13.0 (0.50) | | ADU049 | 109.6 (4.31) | 9.6 (0.38) | 2.9 (0.11) | 114.7 (4.51) | 9.2 (0.36) | 2.4 (0.10) | 131.5 (5.18) | 8.2 (0.32) | 2.1 (0.08) | 287.3 (11.31) | 13.0 (0.50) | | ADU062 | 109.9 (4.32) | 9.4 (0.37) | 2.9 (0.11) | 114.9 (4.52) | 9.0 (0.35) | 2.4 (0.10) | 131.3 (5.17) | 8.0 (0.31) | 2.1 (0.08) | 287.3 (11.31) | 13.0 (0.50) | | ADU080 | 109.9 (4.32) | 9.4 (0.37) | 2.9 (0.11) | 114.9 (4.52) | 9.0 (0.35) | 2.4 (0.10) | 131.3 (5.17) | 8.0 (0.31) | 2.1 (0.08) | 287.3 (11.31) | 13.0 (0.50) | ### Examples: Calculation L, and L, #### Tandem ADU062 Thru-drive with ADU041 rear ported $L_1 = Lcg$ 131.3mm (5.17 inches) $L_2 = Lt + Lcg$ 287.3mm + 109.6mm = 396.9mm (15.6 inches) # Tandem dual seal ADU049 Thru-drive with ADU049 side ported $L_1 = Lcg + Lds$ 131.5mm + 13mm = 144.5mm (5.69 inches) $L_2 = Lt + Lds + Lcg$ 287.3mm + 13mm + 114.7mm = 415mm (16.34 inches) #### Tandem pump applications Eaton recommends that tandem pump applications be provided with additional support to limit overhung loading of the mounting flange. The thru-drive alternate attachment points on the rear flange may be used with a customer designed support. ### Installation and start-up **Warning:** Care should be taken that mechanical and hydraulic resonances are avoided in the application of the pump. Such resonances can seriously compromise the life and/or safe operation of the pump. #### **Drive data** Mounting attitude should be horizontal using the appropriate case drain ports to ensure that the case remains full of fluid at all times. Consult your local Eaton Representative if a different arrangement is required. In those cases where geometric tolerances of mounting are critical, or where specific tolerance ranges are required and not specified, consult Eaton Engineering for specific limits. Direction of shaft rotation, viewed from the prime mover end, must be as indicated in the model designation on the pump—either right hand (clockwise) or left hand (counterclockwise). Direct coaxial drive through a flexible coupling is recommended. If drives imposing radial shaft loads are considered, please consult your Eaton Representative. #### Start-up procedure Make sure the reservoir and circuit are clean and free of dirt/debris prior to filling with hydraulic fluid. Fill the reservoir with filtered oil and fill to a level sufficient enough to prevent vortexing at the suction connection to pump inlet. It is good practice to clean the system by flushing and filtering, using an external slave pump. **Caution:** Before the pump is started, fill the case through the uppermost drain port with hydraulic fluid of the type to be used. The case drain line must be connected directly to the reservoir and must terminate below the oil level. Once the pump is started, it should prime within a few seconds. If the pump does not prime, check to make sure that there are no restrictions between the reservoir and the inlet to the pump, and that the pump is being rotated in the proper direction, and that there are no air leaks in the inlet line and connections. Also check to make sure that trapped air can escape at the pump outlet. After the pump is primed, tighten the loose outlet connections, then operate for five to ten minutes (unloaded) to remove all trapped air from the circuit. If the reservoir has a sight gage, make sure the fluid is clear – not milky. #### Fluid cleanliness The 420 Series pumps are rated in anti-wear petroleum fluids with a contamination level of 21/18/13 per ISO 4406. Operation in fluids with levels more contaminated than this is not recommended. Fluids other than petroleum, severe service cycles, or temperature extremes are cause for adjustment of these codes. Please contact your Eaton Representative for specific duty cycle recommendation. Eaton 420 Series pumps, as with any variable displacement piston pumps, will operate with apparent satisfaction in fluids up to the rating specified here. Experience has shown however, that pump and hydraulic system life is not optimized with high fluid contamination levels (high ISO cleanliness codes). Proper fluid condition is essential for long and satisfactory life of hydraulic components and systems. Hydraulic fluid must have the correct balance of cleanliness, materials, and additives for protection against wear of components, elevated viscosity and inclusion of air. Essential information on the correct methods for treating hydraulic fluid is included in Eaton publication 561 – "Eaton Guide to Systemic Contamination Control" – available from your local Eaton distributor. In this publication, filtration and cleanliness levels for extending the life of axial piston pumps and other system components are listed. Included is an excellent discussion of the selection of products needed to control fluid condition Eaton Hydraulics Group USA 14615 Lone Oak Road Eden Prairie, MN 55344 USA Tel: 952-937-9800 Fax: 952-294-7722 www.eaton.com/hydraulics Eaton 1000 Eaton Boulevard Cleveland, OH 44122 United States Eaton.com © 2018 Eaton All Rights Reserved Printed in USA Document No. E-PUPI-TM002-E6 / 4149 Supersedes E-PUPI-TM002-E5 July 2018 Eaton Hydraulics Group Europe Route de la Longeraie 7 1110 Morges Switzerland Tel: +41 (0) 21 811 4600 Fax: +41 (0) 21 811 4601 Eaton Hydraulics Group Asia Pacific Eaton Building No.7 Lane 280 Linhong Road Changning District, Shanghai 200335 China Tel: (+86 21) 5200 0099 Fax: (+86 21) 2230 7240 Eaton is a registered trademark. All other trademarks are property of their respective owners.